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We present a discontinuous Galerkin (DG) scheme with suitable quadrature rules [15]
for ideal compressible magnetohydrodynamic (MHD) equations on structural meshes. The 
semi-discrete scheme is analyzed to be entropy stable by using the symmetrizable version 
of the equations as introduced by Godunov [32], the entropy stable DG framework with 
suitable quadrature rules [15], the entropy conservative flux in [14] inside each cell and 
the entropy dissipative approximate Godunov type numerical flux at cell interfaces to make 
the scheme entropy stable. The main difficulty in the generalization of the results in [15]
is the appearance of the non-conservative “source terms” added in the modified MHD 
model introduced by Godunov [32], which do not exist in the general hyperbolic system 
studied in [15]. Special care must be taken to discretize these “source terms” adequately 
so that the resulting DG scheme satisfies entropy stability. Total variation diminishing / 
bounded (TVD/TVB) limiters and bound-preserving limiters are applied to control spurious 
oscillations. We demonstrate the accuracy and robustness of this new scheme on standard 
MHD examples.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we construct an entropy stable discontinuous Galerkin (DG) scheme for the system of ideal compressible 
magnetohydrodynamic (MHD) equations. As most conservation laws from applications, the entropy condition is an important 
property for the MHD system. It is highly desirable to design high order DG schemes to satisfy entropy stability. It is well 
known that a conservation law system has an entropy if and only if it is symmetrizable. Godunov [32] pointed out that 
systems like MHD which have a divergence constraint cannot be symmetrized unless some additional source terms (which 
under the divergence-free condition would be zero) are added. Therefore, we will only consider the MHD system with such 
source terms added.

The ideal MHD equations are a system of conservation laws for the mass, momentum, energy and magnetic field. The 
magnetic field has to satisfy an extra constraint that its divergence is zero, which is a reflection of the principle that there 
are no magnetic monopoles. The exact solution of the MHD equations preserves zero divergence for the magnetic field 
in future time, if the initial divergence is zero. However, in numerical computation, it is not obvious that the divergence 
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free condition will be satisfied. This may lead to instabilities and loss of the positivity for density and pressure in the 
computations. Many works have dealt with this problem which are based on one dimensional Riemann solvers for the 
7 × 7 system of conservation laws [7,11,12,22]. These schemes add additional steps to take care of the divergence free 
constraint. In [11] the authors suggest to project the numerical solution to a subspace of zero divergence solutions which 
involves the solution of an elliptic Poisson equation. Another method is called the constrained transport (CT) by Evans and 
Hawley [24], which simply means a particular finite difference discretization on a staggered grid which maintains ∇ · B in a 
specific discretization. Nonstaggered versions of the CT method have also been developed, see [25,34,47]. Finite volume and 
discontinuous Galerkin schemes to enforce the exact divergence-free condition are developed in [2,44,4]. Another way to 
keep the divergence exactly zero is to rewrite the MHD equations in terms of the vector potential A instead of the magnetic 
field B = ∇ × A. That not only leads to the order of spatial derivatives being increased by one, but also reduces the order of 
accuracy by one (see [24] for a more in-depth discussion).

A different class of schemes is the 8-wave formulation of the MHD equations suggested by Powell [46], which is found 
to behave better in terms of stability and accuracy than the discretization of the usual conservative form. Powell noticed 
that the conservative MHD equations have a Jacobian with a non-physical zero eigenvalue, and the addition of suitable 
non-conservative source terms would recover the correct physical structure. This approach however leads to a model that 
is not conservative. According to the Lax–Wendroff theorem [41], however, only conservative schemes can guarantee the 
correct jump conditions and propagation speed in the limit, for a discontinuous solution [52].

In terms of spatial discretizations, high order schemes have been developed by different techniques, including essentially 
non-oscillatory (ENO) and weighted ENO (WENO) schemes [39,2], ADER-WENO schemes [5,3], adaptive mesh refinement 
(AMR) schemes [1], DG schemes with locally or globally divergence-free constraints [43,4], and central DG schemes with 
arbitrary order exactly divergence-free constraint [44].

The Runge–Kutta discontinuous Galerkin method is a popular category of high order numerical schemes developed in 
[20,19,18,21]. Jiang and Shu [38] proved a discrete entropy inequality for semi-discrete DG schemes for the square entropy 
for scalar conservation laws, in arbitrary dimension and on arbitrary triangulations, which is extended to symmetric sys-
tems by Hou and Liu [36]. In recent years, entropy stable schemes have been extensively studied. Tadmor [51] established 
the framework of entropy conservative fluxes and entropy stable fluxes, and Lefloch, Mercier and Rohde [42] provided a 
procedure to compute high order accurate entropy conservative fluxes. Entropy stable schemes have also been constructed 
either through the summation-by-parts (SBP) procedure [26,13,29] or through suitable split forms [27,29,30]. Motivated by 
these approaches, in [15], Chen and Shu discretize the integrals in the DG method by the Gauss–Lobatto type quadratures, 
resulting in the nodal formulation [35,40], then replace the fluxes inside the cell by entropy conservative fluxes, and take 
the fluxes across cell interfaces as the usual entropy dissipative fluxes. It is shown in [15] that DG schemes constructed in 
this general framework satisfy the entropy condition for the given entropy.

The entropy stable schemes have the advantages that the numerical method is nearly isentropic in smooth regions and 
entropy is guaranteed to be increasing across discontinuities. Thus, the numerics precisely follow the physics of the second 
law of thermodynamics. Another advantage of entropy stable algorithms is that one can limit the amount of dissipation 
added to the numerical scheme to guarantee entropy stability. Entropy stable schemes are developed by several authors 
[8,28,9,10,53,14]. In recent years, especially, the entropy schemes based on finite volume methods are popularly developed. 
Winters and Gassner [53] designed an affordable analytical expression of the numerical interface flux function that discretely 
preserves the entropy of the system with a particular source term [37]. Derigs et al. [23] extended this method into multi-
physics, multi-scale AMR simulation with high-order in space by using spatial reconstruction techniques. Chandrashekar and 
Klingenberg [14] constructed the semi-discrete finite volume entropy stable schemes by using the symmetrized version of 
the equations as introduced by Godunov.

In this paper, we develop a semi-discrete entropy stable DG scheme for the MHD equations, following the approach 
in [15], on one and two dimensional Cartesian meshes. There is no conceptual difficulty to extend the scheme to three 
dimensions and to unstructured meshes, again following the framework in [15], however it will become more technical and 
we leave it for future work. An important ingredient in this general framework is the entropy conservative flux, for which 
we use the one in [14], originally designed for finite volume schemes. The resulting semi-discrete scheme is proved to be 
entropy stable, and a fully discrete scheme is obtained by using a Runge–Kutta scheme for time integration. We remark 
that the appearance of the non-conservative “source terms” added in the modified MHD model introduced by Godunov 
[32] are necessary in order for the equation to be symmetrizable and to accommodate an entropy inequality on the PDE 
level. Therefore, in order to establish entropy stability, we develop our scheme based on this non-conservative model, 
which renders additional technical challenges on the suitable DG discretization for the non-conservative source terms and 
its compatibility with the entropy stability. It also leaves the possibility as pointed out in [52] that it may give wrong 
solutions for some discontinuous problems. It will be interesting if it is possible to develop entropy stable schemes using 
the conservative formulation, which will be left for future investigation.

The organization of the paper is as follows. In section 2, we first recall the ideal MHD equations and its symmetrization 
properties and Godunov’s modification. Then we construct the entropy stable DG scheme for the modified MHD equations 
in section 3. We provide standard MHD numerical tests in section 4. In section 5 we give a few concluding remarks and 
perspectives for future work. Finally, in the appendix we provide the proof for the main theorem.
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2. Ideal MHD equations

The ideal magneto-hydrodynamical model, or the set of ideal MHD equations, is a system of equations which describes 
the conservation of mass, momentum, energy, and magnetic field of a particular fluid. This system consists of a set of 
nonlinear hyperbolic equations,

∂ρ

∂t
+ ∇ · (ρu) = 0

∂ρu

∂t
+ ∇ · (ρuu + (p + |B|2

2
)I − BB) = 0 (2.1)

∂B

∂t
+ ∇ · (uB − Bu) = 0

∂ E

∂t
+ ∇ · ((E + p + |B|2

2
)u − (B · u)B) = 0

with the additional divergence constraint

∇ · B = 0

Here ρ is the density, u is the velocity field, p is the pressure, E is the total energy and B is the magnetic field. The ratio 
of the specific heats is given by γ and the total energy E is given by

E = 1

2
ρ|u|2 + 1

2
|B|2 + p

γ − 1

This system combines the equations of gas dynamics with Maxwell equations for problems in which relativistic, viscous, 
and resistive effects can be neglected; the permeability is set to be unity. If the divergence constraint is satisfied at the 
initial time, then the equation for B implies that

∂

∂t
∇ · B = 0

We rewrite equations (2.1) in conservative form in the two dimensional case

wt + ∇ · F(w) = 0 (2.2)

where

w = [ρ,ρux,ρu y,ρuz, Bx, B y, Bz, E]T , F(w) = [f1(w), f2(w)] (2.3)

f1 = [ρux,ρu2
x + p + 1

2
|B|2 − B2

x ,ρuxu y − Bx B y,ρuxuz − Bx Bz,0, ux B y − u y Bx,

ux Bz − uz Bx, ux(E + p + 1

2
|B|2) − Bx(ux Bx + u y B y + uz Bz)]T (2.4)

f2 = [ρu y,ρu yux − B y Bx,ρu2
y + p + 1

2
|B|2 − B2

y,ρu yuz − B y Bz, u y Bx − ux B y,0,

u y Bz − uz B y, u y(E + P + 1

2
|B|2) − B y(ux Bx + u y B y + uz Bz)]T (2.5)

2.1. The entropy function for the ideal MHD

It is well known the weak solutions of conservation laws are not unique. If the weak solution satisfies enough entropy 
conditions, one can obtain uniqueness, at least for the scalar problems [45]. Even if uniqueness may not be guaranteed, it 
is often also desirable to satisfy an entropy condition in the system case. We recall the definition of an entropy function.

Definition 2.1. A convex function U is called an entropy function for the system (2.2) if there exist entropy fluxes Fα such 
that

F ′
α(w) = U ′(w)f′α(w), α = 1,2 (2.6)

where U ′(w) and F ′
α(w) are viewed as row vectors, f′α(w) is the Jacobian matrix.
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The functions (U , Fα) are said to form an entropy pair. If a system of conservation laws have smooth solutions, they 
satisfy an additional entropy conservation law as can be seen below

0 = U ′(w)
∂w

∂t
+ U ′(w)f′α(w)

∂w

∂xα
= ∂U

∂t
+ ∂ Fα

xα
(2.7)

where we use the Einstein summation convention on repeated indices like α which runs over the number of spatial dimen-
sions. For solutions which are not smooth, the above equation is replaced with an inequality

∂U

∂t
+ ∂ Fα

∂xα
≤ 0 (2.8)

in the sense of distribution.

Definition 2.2. The conservation law (2.2) is said to be symmetrizable if there exists a change of variables w → v which 
symmetrizes it, i.e., equation (2.2) becomes

∂w

∂v

∂v

∂t
+ ∂fα

∂w

∂w

∂v

∂v

∂xα
= 0 (2.9)

where ∂w
∂v is a symmetric positive definite matrix and ∂fα

∂w
∂w
∂v are symmetric matrices.

There is a close connection between the existence of an entropy pair and the symmetrization of a system of conservation 
laws.

Theorem 2.1. (Mock) A necessary and sufficient condition for the system (2.2) to possess a strictly convex entropy U (w) is that there 
exists a change of dependent variables w = w(v) that symmetrizes (2.2). (For the proof, see, e.g. [31].)

Now since ∂w
∂v and ∂fα

∂w
∂w
∂v are both symmetric, there exist functions ϕ(v) and ψα(v), called potential function and po-

tential fluxes, such that

ϕ′(v) = ∂w

∂v
, ψ ′

α(v) = fα(w(v))T (2.10)

It is easy to verify that

ϕ(v) = wT v − U , ψα(v) = v · fα(w(v)) − Fα (2.11)

For the MHD equations, if we define the thermodynamic entropy [14]

s = ln(pρ−γ )

then the equations of ideal MHD can be used to derive an equation for ρs

∂ρs

∂t
+ ∇ · (ρsu) + (γ − 1)

ρ(u · B)

p
∇ · B = 0

Under the constraint ∇ · B = 0, the following quantities

U = − ρs

γ − 1
, Fα = − ρsuα

γ − 1
(2.12)

satisfy an additional conservation law for smooth solutions, so that U is an entropy function. The entropy variables corre-
sponding to the above entropy function are given by

v = U ′(w)T = [ γ − s

γ − 1
− β|u|2,2βu,2βB,−2β]T , where β = ρ

2p

However the change of variable w → v fails to symmetrize the ideal MHD equations [8]. To achieve symmetrization of sys-
tems with divergence constraints like the ideal MHD, Godunov [32] introduced a modified form of the ideal MHD equations

∂w

∂t
+ ∂fα

∂xα
+ φ′(v)T ∇ · B = 0 (2.13)

where

φ(v) = 2β(u · B). (2.14)

In terms of the components of v, this function can be written as
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φ(v) = − v2 v5 + v3 v6 + v4 v7

v8

which is homogeneous of degree one i.e.

v · φ′(v)T = φ(v) (2.15)

Its Jacobian is given by

φ′(v) = [0,B,u,u · B]
Since ∇ · B = 0 the above modification is consistent. In these modified equations, the corresponding potential function and 
potential fluxes are given by

ϕ(v) = wT v − U = ρ + β|B|2, (2.16)

ψα(v) = v · fα(w(v)) + φ(v)Bα − Fα = ρuα + βuα |B|2 (2.17)

which satisfy

ϕ(v) = wT v − U , ψα(v) = v · ψ ′
α(v) − Fα (2.18)

3. Entropy stable high order DG schemes

In this section, we proceed to unravel the entropy stable DG scheme for the modified MHD equations. We firstly con-
sider the one dimensional case. The one-dimensional framework can be directly applied to two-dimensional rectangular 
meshes through tensor products. We largely follow the approach in [15], paying attention to the complication caused by the 
non-conservative source terms. The equation we are discretizing is

∂w

∂t
+ ∂f1(w)

∂x
+ φ′(v)T ∂ Bx

∂x
= 0 (3.1)

Firstly, we assume that we have periodic or compactly supported boundary conditions. Secondly, time is taken to be 
continuous, so that we conduct semidiscrete analysis. Finally, the numerical solution is assumed to be within the set 

 = {w ∈R

8 : ρ > 0, p > 0}.
We firstly construct the DG scheme for equations (3.1). We start from the mesh

x1/2 < x3/2 < · · · < xN+1/2, I j = [x j−1/2, x j+1/2], �x j = x j+1/2 − x j−1/2

and the finite element space of polynomial degree k

Vk
h =

{
wh : wh|I j ∈ [Pk(I j)]8,1 ≤ j ≤ N

}
(3.2)

where Pk(I j) is the space of polynomials of degree at most k over the subintervals I j . Let us define the following notations 
for the arithmetic average and jump on the interface of any quantity

(·) j+1/2 = 1

2
[(·)−j+1/2 + (·)+j+1/2], [·] j+1/2 = ((·)+j+1/2 − (·)−j+1/2)

We find wh ∈ Vk
h , such that for any vh ∈ Vk

h and 1 ≤ j ≤ N∫
I j

∂wT
h

∂t
vh dx =

∫
I j

f1(wh)
T ∂vh

∂x
dx −

∫
I j

φ′(wh)
∂ Bx

∂x
vh dx

− f̂1
T
j+1/2vh(x−

j+1/2) + f̂1
T
j−1/2vh(x+

j−1/2)

− 1

2
φ′(wh(x−

j+1/2))[Bx] j+1/2vh(x−
j+1/2)

− 1

2
φ′(wh(x+

j−1/2))[Bx] j−1/2vh(x+
j−1/2) (3.3)

where f̂1 j+1/2 is a numerical flux at the element interface, depending on the values of numerical solution from both sides

f̂1 j+1/2 = f̂1(wh(x−
j+1/2),wh(x+

j+1/2)) (3.4)

In general, f̂1 j+1/2 is derived from some (exact or approximate) Riemann solver. Notice that this DG scheme is a combination 
of the classic DG scheme for conservation laws [19] and the DG method for directly solving the Hamilton–Jacobi equations 
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[17] in treating the non-conservative terms. Notice also that, in the piecewise constant k = 0 case, our DG scheme can be 
written in the finite volume manner

d

dt
(wh) j = − 1

�x j
(f̂1 j+1/2 − f̂1 j−1/2) − φ′((wh) j)

T

(
(Bx) j+1/2 − (Bx) j+1/2

�x j

)
(3.5)

which is exactly the same as the finite volume scheme in [14]. Next, we are going to apply the Legendre–Gauss–Lobatto 
quadrature rule with k + 1 quadrature points to approximate the three integrals in (3.3).

3.1. Gauss–Lobatto quadrature and summation-by-parts

Consider the reference element I = [−1, 1] associated with Gauss–Lobatto quadrature points

−1 = ξ0 < ξ1 < · · · < ξk = 1

and quadrature weights {ω j}k
j=0. Define the Lagrangian (nodal) basis polynomials

L j(ξ) =
N∏

l=0
l �= j

ξ − ξl

ξ j − ξl

such that L j(ξl) = δ jl . Let 〈·, ·〉 and 〈·, ·〉ω denote the continuous and discrete inner products

〈u, v〉 =
1∫

−1

uv dξ, 〈u, v〉ω =
k∑

j=0

ω ju(ξ j)v(ξ j)

The difference matrix D is set to be

D jl = L′
l(ξ j) (3.6)

and the mass matrix M and stiffness matrix S are defined as

M jl = 〈L j, Ll〉ω = ω jδ jl, so that M = diag{ω0, · · · ,ωk} (3.7)

S jl = 〈L j, L′
l〉ω = 〈L j, L′

l〉 (3.8)

We first recall the summation-by-parts property [13,15]:

Theorem 3.1. (Summation-by-parts property). Set the boundary matrix

B = diag{−1,0, · · · ,0,1} = diag{τ0, · · · , τk} (3.9)

Then

S = M D, M D + DT M = S + S T = B (3.10)

which is a discrete analogue of integration by parts.

Using the matrices above, we are able to convert (3.3) into a compact matrix vector formulation based on the nodal 
values. We first introduce some notations

x j(ξ) = 1

2
(x j+1/2 + x j−1/2) + ξ

2
�x j

Bx,l = Bx(x j(ξl)), wl
h = wh(x j(ξl)), f1

l = f1(wl
h), φ′ T

l = φ′(v(ξl))
T , l = 0, · · ·k

�f1∗
j = [f̂1 j−1/2,0, · · · ,0, f̂1 j+1/2] = [f1∗0, · · · , f1∗k]

�g j = [1

2
φ′ T (v)+j−1/2[Bx] j−1/2,0, · · · ,0,−1

2
φ′ T (v)−j+1/2[Bx] j+1/2] = [g0, · · · ,gk]

We will concentrate on a single element and omit the script j. The entropy stable nodal DG scheme is given by

�x

2

dwp
h

dt
+ 2

k∑
l=0

D plf1 S(wp
h ,wl

h) +
k∑

l=0

D plφ
′ T
p Bx,l = τp

ωp
(f1

p − f1∗p) + τp

ωp
gp, p = 0, · · · ,k (3.11)

where f1 S (wp
h , wl

h) and f̂1 are respectively the entropy conservative flux and entropy stable flux proposed by Chandrashekar 
and Klingenberg [14] and defined as follows:
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Definition 3.1. A consistent, symmetric two-point numerical flux fS (uL, uR) is entropy conservative for a given entropy 
function U if

(vR − vL)
T fS(uL,uR) + (φR − φL)

BxR + BxL

2
= ψR − ψL (3.12)

where vL,R , φR,L , ψR,L and BxR,L are the entropy variables, the function defined in (2.14), potential fluxes ψ1(v) and mag-
netic field Bx at the left and right states.

Definition 3.2. A consistent two-point numerical flux ̂f(uL, uR) is entropy stable for a given entropy function U if

(vR − vL)
T f̂(uL,uR) + (φR − φL)

BxR + BxL

2
− (ψR − ψL) ≤ 0 (3.13)

The next theorem states that (3.11) is (internally) entropy conservative.

Theorem 3.2. If fS (uR , uL) is entropy conservative in the sense of (3.12), then (3.11) is also conservative within a single element, i.e. it 
satisfies

d

dt

⎛⎝ k∑
p=0

�x

2
ωp U p

⎞⎠ = Fk −F0 (3.14)

where

Fk = (ψk − vT
k f1

k∗) − φk(Bx)k (3.15)

F0 = (ψ0 − vT
0 f1

0∗) − φ0(Bx)0. (3.16)

Moreover, the scheme is at least k-th order accurate measured by local truncation errors.

Proof. The proof of this theorem is provided in the Appendix A. �
For the MHD equations, Chandrashekar and Klingengberg [14] suggested the following entropy conservative flux

f (1)
1S = ρ̂ūx

f (2)
1S = ρ̄

2β̄
+ ūx f (1)

1S + 1

2
|B|2 − B̄x B̄x

f (3)
1S = ū y f (1)

1S − B̄x B̄ y

f (4)
1S = ūz f (1)

1S − B̄x B̄ z

f (5)
1S = 0

f (6)
1S = 1

β̄
(βux B̄ y − βu y B̄x)

f (7)
1S = 1

β̄
(βux B̄z − βuz B̄x)

f (8)
1S = 1

2

[
1

(γ − 1)β̂
− |u|2

]
f (1)
1S + ūx f (2)

1S + ū y f (3)
1S + ūz f (4)

1S

+ B̄x f (5)
1S + B̄ y f (7)

1S + B̄ z f (7)
1S − 1

2
ūx|B|2 + (ūx B̄x + ū y B̄ y + ūz B̄ z)B̄x

where ˆ(·) is logarithmic average of two strictly positive quantities as

α̂ = αr − αl

lnαr − lnαl

The next theorem establishes that entropy stable interface numerical fluxes make the whole scheme entropy stable.

Theorem 3.3. If the numerical flux ̂f1 at the element interface is entropy stable, then the scheme (3.11) is entropy stable.
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Proof. According to (3.14), the entropy production rate at the interface is

(ψ
j

k − (v j
k)

T f̂1 j+1/2) − φ
j

k (Bx)
j
k − (ψ

j+1
0 − (v j+1

0 )T f̂1 j+1/2) + φ
j+1
0 (Bx)

j+1
0

= (v j+1
0 − v j

k)
T f̂1 j+1/2(wk, j

h ,w0, j+1
h ) − (ψ

j+1
0 − ψ

j
k ) + (Bx)

−
j+1/2 + (Bx)

+
j+1/2

2
(φ

j+1
0 − φ

j
k )

which is non-positive as f̂1 is entropy stable. By the assumption of periodic or compactly supported boundary condition, 
the whole scheme is entropy stable. �

As we know, for systems, most popular numerical fluxes rely on exact or approximate Riemann solver. The Godunov 
flux based on exact Riemann solvers is by definition entropy stable. Many approximate Riemann solvers, such as the H LL
or Lax–Friedrichs fluxes are also entropy stable provided the left and right wave speeds λL and λR are properly chosen 
[10]. We will use the Lax–Friedrichs fluxes in our computation in next section. When strong shocks appear, limiters such 
as the TVD/TVB limiter [49,20] and/or the bound-preserving limiter [54] as an extra stabilizing mechanism help to reduce 
numerical oscillation. Fortunately, the bound-preserving limiter does not increase entropy, and the TVD/TVB limiter also 
does not increase entropy when applied componentwise [15].

4. Numerical examples

In this section, we present numerical examples on standard one and two dimensional MHD test cases to illustrate the 
accuracy and robustness of the entropy stable DG scheme in computing smooth and discontinuous flows. The semi-discrete 
scheme (3.11) is integrated in time using the classical third order accurate strong stability preserving Runge–Kutta scheme 
[50,33]. We compute on elements of degree k = 2 and set the CFL number to be 0.15 for all experiments. The time step is 
chosen based on the following CFL condition

�t = cf l · min
j

( |(ūx) j| + (c f ,x) j

�x

)−1

for the one dimensional case (4.1)

�t = cf l · min
i, j

( |(ūx)i, j| + (c f ,x)i, j

�x
+ |(ū y)i, j| + (c f ,y)i, j

�y

)−1

for the two dimensional case (4.2)

where c f ,x and c f ,y are the fast speeds in the x and y directions, see [39] for the definition.

4.1. One dimensional Riemann problems

In this section, we solve standard one-dimensional Riemann problems. The initial condition for the first Riemann problem 
is given by

(ρ, ux, u y, uz, B y, Bz, p) =
{

(1.000,0,0,0,+1,0,1.0) for x < 0

(0.125,0,0,0,−1,0,0.1) for x > 0
(4.3)

with Bx = 0.75 and γ = 2 on the computational domain [−1, 1]. This is the example used by Brio and Wu in [12] to show 
the formation of the compound wave in MHD.

The solution at t = 0.2 is shown in Fig. 4.1, which includes the left moving waves: the fast rarefaction wave, the inter-
mediate shock attached by a slow rarefaction wave; and the right moving waves: the contact discontinuity, a slow shock, 
and a fast rarefaction wave. The results obtained with 5000 cells serve as reference in Fig. 4.1. We can see that all the waves 
are resolved well with 800 cells.

The initial condition for the second Riemann problem is

(ρ, ux, u y, uz, B y, Bz, p) =
{

(1.000,0,0,0,+1,0,1000) for x < 0

(0.125,0,0,0,−1,0,0.10) for x > 0
(4.4)

with Bx = 0 and γ = 2. This problem is used to evaluate the code for high Mach number flow. The computational domain 
is taken to be [−1, 1]. The solution at t = 0.012 is shown in Fig. 4.2. Again, the resolution is good with 200 cells.

In both problems we have applied the TVB limiter with the TVB constant M = 10 in the local characteristic fields com-
puted by the eigenvectors evaluated with the cell averages, see [15] for the details of the implementation of such limiters. 
We remark that the application of the TVB limiter in the local characteristic fields would not guarantee the entropy non-
increasing property. In some of the later examples, we plot the evolution of entropy to indicate that it is still numerically 
decaying with time with a fully discretized scheme and with the TVB limiter applied in the local characteristic fields.
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Fig. 4.1. The first one-dimensional Riemann example with 800 cells (squares) on a background solid line computed with 5000 cells. t = 0.2 and M = 10. 
The symbol FR denotes a fast rarefaction wave; SM is a compound wave (an intermediate shock followed by a slow rarefaction wave); C is a contact 
discontinuity; SS is a slow shock. Top: ρ; middle left: ux; middle right: u y ; bottom left: B y ; bottom right: p.

4.2. The torsional Alfvén wave pulse

Next we consider the propagation of a torsional Alfvén wave pulse [6] which is initialized as

(ρ, ux, Bx, p) = (1,10,10/
√

4π,0.01),

(ux, u y) = 10(cosφ, sin φ), (B y, Bz) = −10(cosφ, sinφ),

with a pulse around the center of the computational domain [−0.5, 0.5]. Here φ = π
8 (tanh( 0.25+x

δ
) + 1)(tanh( 0.25−x

δ
) + 1)

with δ = 0.005. The boundary conditions are periodic and γ = 5/3. In this example, the initial pressure is very small, which 
is less than ten-thousandth of the total energy. It is easy for most numerical schemes to produce negative pressure, hence 
we use the positive-preserving limiter [16]. The scheme is carried out on a uniform mesh with N = 800 cells. In Fig. 4.3, we 
present the total energy and pressure at t = 0.156. Note that there are two pulses in the solution, and successful simulation 
should properly preserve the shape of these features.
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Fig. 4.2. The second one-dimensional Riemann example with 200 cells (squares) on a background solid line of the exact solution. t = 0.012 and M = 10. 
Top left: ρ; top right: ux; bottom left: B y ; bottom right: p.

Fig. 4.3. The total energy E (left) and pressure p (right) of the torsional Alfvén wave pulse on an 800 cell mesh at t = 0.156.

4.3. The Orszag–Tang vortex problem

In this subsection, we consider the Orszag–Tang vortex problem which is a widely used test example in MHD simulations. 
The initial conditions are taken as in [14]

ρ = 25

36π
, u = (− sin(2π y), sin(2πx),0), p = 5

12π
,

B = 1√
4π

(− sin(2π y), sin(4πx),0)

The computational domain is taken to be [0, 1] ×[0, 1] with periodic boundary conditions on all sides, the constant γ = 5/3. 
The smooth initial conditions evolve into a more complex flow with many discontinuities. We use uniform meshes to 
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Fig. 4.4. Density at t = 0.5 for the Orszag–Tang test case on different meshes. The density range is 0.09 to 0.48.

Fig. 4.5. Evolution of the total entropy with time for the (a) Orszag–Tang test (b) rotor test.

implement the scheme. The solution at t = 0.5 is shown in Fig. 4.4 on meshes of sizes 128 × 128, 256 × 256, 512 ×
512 and 1024 × 1024 with M = 10. We find that the scheme is stable on all the meshes, including on the very fine 
mesh, which shows the robustness of the scheme. With explicit time discretization by a Runge–Kutta scheme, we cannot 
prove the entropy stability, hence we compute the total entropy 

∑
i, j

∑k
p=0 ωp U ((wp,n

h )i, j)�x�y which in principle should 
decrease with time if the scheme is entropy stable. Fig. 4.5a shows that this quantity does not increase with time during 
the simulation.

4.4. The rotor test

This test case was first proposed in [7] but we use the version given in [52], where it is referred to as the first rotor 
problem. The computational domain is [0, 1] × [0, 1] with periodic boundary conditions on all sides, the constant γ = 1.4
and initial condition is given as follows
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Fig. 4.6. Mach contours for the rotor test case at time t = 0.15 on different meshes. 30 contours between 0 and 4.2 are shown.

(ρ, ux, u y) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(10,

u0

r0
(−(y − 1/2)),

u0

r0
(x − 1/2)) for r < r0

(1 + 9 f ,
f u0

r
(−(y − 1/2)),

f u0

r
(x − 1/2)), f = r1 − r

r1 − r0
for r0 ≤ r < r1

(1,0,0) for r1 ≤ r

(4.5)

where r = √
(x − 1/2)2 + (y − 1/2)2, r1 = 0.1, r0 = 0.115 and u0 = 2. The rest of the quantities are constants and are given 

by

uz = 0, p = 1.0, B = 5√
4π

(1,0,0)

The results at t = 0.15 are obtained on meshes with 128 × 128, 256 × 256, 512 × 512 and 1024 × 1024 cells with M = 10. 
The contours of the Mach number u/cs with the sound speed cs = √

γ p/ρ are shown in Fig. 4.6. Similarly to what the 
authors of [7] and [52] have noted, when using the standard DG method, some “distortion” around the central rotating area 
can be observed [43]. There is no distortion in Fig. 4.6 for our entropy stable DG scheme, and also we have the positivity 
of the density and pressure without using the bound-preserving limiter for this example. The total entropy is shown in 
Fig. 4.5b, and we again observe a monotonic decay which indicates that the fully discrete scheme is also entropy stable.

4.5. Smooth Alfvén waves

This test is taken from [52] and consists of a circularly polarized Alfvén wave which propagates at an angle of α = 30◦ . 
The computational domain is taken to be [0, 1/ cos α] ×[0, 1/ sinα] with periodic boundary conditions. The constant γ = 5/3
and the initial condition is given as follows

ρ = 1, (ux, u y) = v⊥(− sinα, cosα), p = 0.1

Bx = B‖ cosα − B⊥ sinα, B y = B‖ sinα + B⊥ cosα, Bz = uz = 0.1 cos(2πx‖)

B‖ = 1, B⊥ = v⊥ = 0.1 sin(2πx‖), x‖ = x cosα + y sinα

The solution have periodicity, it returns to its initial state after a time of t = 1 units which is the period of the solution. We 
show errors in the L1 and L2 norms of B⊥ in Table 4.1 at time t = 5. We can see that the optimal order of error accuracy 
is obtained.
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Table 4.1
L1 and L2 errors of B⊥ and corresponding convergence rates for the circularly po-
larized Alfvén wave at t = 5.

N×N L1-error Order L2-error Order

32×32 3.48E−05 – 2.61E−05 –
64×64 3.71E−06 3.23 2.71E−06 3.27
128×128 4.25E−07 3.12 3.11E−07 3.13
256×256 4.98E−08 3.10 3.90E−08 2.99

Fig. 4.7. The solution of the 2D rotated shock tube problem by the entropy stable DG scheme (symbols) on a mesh with 512 × 2 cells. For comparison, the 
non-rotated 1D solution with 800 cells is also plotted (solid line).

4.6. Rotated shock tube problem

This test case is taken from [48] and the shock propagates at an angle of α = 45◦ . The initial left state is (ρ, u‖,
u⊥, uz, B‖, B⊥, Bz, p) = (1, 10, 0, 0, 5/

√
4π, 5/

√
4π, 0, 20) and the initial right state is (1, −10, 0, 0, 5/

√
4π, 5/

√
4π, 0, 1). 
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The mesh is Cartesian with �x = �y; we use 2 cells in the y direction and 512 cells in the x direction. The left and right 
boundaries are fixed according to the initial condition since the computation is stopped at time t = 0.08 cosα = 0.08/

√
2

before the fast shocks would reach the left and right boundaries. The top and bottom boundaries are of the shifted periodic 
type according to the translational symmetry in the (−1, 1) direction as explained in [52]. We plot the first row ( j = 1) 
of the physical mesh in Fig. 4.7. This may be compared with the solution from [48] except that they plot the slice along 
the line x = y. We also have the problem that the parallel component of the magnetic field B‖ , which should be constant, 
shows a large error due to the non-conservative formulation, similar to the results in [52] from a non-conservative 8-wave 
scheme. The other quantities have good behavior in comparison with the results in [48].

5. Concluding remarks

We have constructed a DG scheme for the symmetrizable ideal compressible magnetohydrodynamic equations with 
non-conservative source terms. Thanks to the general framework established in [15], the entropy conservative numerical 
flux [14] used inside the cell, and the entropy dissipative Godunov type numerical flux used at the cell interfaces, this 
scheme can be proved to be entropy stable in the semi-discrete case when the additional non-conservative source terms 
are discretized carefully. Limiters including the bound-preserving limiter and the TVD/TVB limiter are applied in test cases 
with strong shocks. We have provided numerical results for standard MHD test cases to show the accuracy and robustness 
of the scheme in computing smooth and discontinuous solutions. The additional non-conservative source terms introduced 
by Godunov are necessary to obtain a symmetrizable formulation and an entropy condition. There is still a conflict between 
the entropy stability which requires the non-conservative source terms, and the conservation property which is lost due to 
these source terms, as mentioned in [14]. In future work, we will extend the method to 3D and to unstructured meshes, 
which involves heavier technicality but no conceptual difficulty due to the general framework in [15]. We would also like 
to construct entropy stable DG schemes in the conserved formulation of MHD, but this would need new ideas if we do not 
want to adopt globally divergence-free bases, which seem unnatural for DG schemes.

Appendix A. Proof of Theorem 3.2

Proof. Entropy conservation:

d

dt

⎛⎝ k∑
p=0

�x

2
ωp U p

⎞⎠ =
k∑

p=0

�x

2
ωpvT

p

dwp
h

dt

=
k∑

p=0

τpvT
p (f1

p − f1
p∗ ) +

k∑
p=0

τpvT
p gp

− 2
k∑

p=0

k∑
l=0

S plv
T
p f1 S(wp

h ,wl
h) −

k∑
p=0

k∑
l=0

S plφp Bx,l

here, we have used the fact that φ(v) is homogeneous of degree one (2.15). Using the SBP property the third term is

k∑
p=0

k∑
l=0

(B pl + S pl − Slp)vT
p f1 S(wp

h ,wl
h) =

k∑
p=0

τpvT
p f1

p +
k∑

p=0

k∑
l=0

S pl(vp − vl)
T f1 S(wp

h ,wl
h)

=
k∑

p=0

τpvT
p f1

p +
k∑

p=0

k∑
l=0

S pl(ψp − ψl) −
k∑

p=0

k∑
l=0

S pl(
Bx,p + Bx,l

2
)(φp − φl)

=
k∑

p=0

τp(vT
p f1

p − ψp) −
k∑

p=0

k∑
l=0

S pl(
Bx,p + Bx,l

2
)(φp − φl)

Then

d

dt

⎛⎝ k∑
p=0

�x

2
ωp U p

⎞⎠ =
k∑

p=0

τp(ψp − vT
p f1

p∗ ) +
k∑

p=0

k∑
l=0

S pl(
Bx,p + Bx,l

2
)(φp − φl)

−
k∑

p=0

k∑
l=0

S plφp Bx,l +
k∑

p=0

τpvT
p gp

The second term is
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k∑
p=0

k∑
l=0

1

2
S pl(φp Bx,p + φp Bx,l − φl Bx,p − φl Bx,l)

= 1

2

k∑
p=0

k∑
l=0

(φp(S pl − Slp)Bx,l) − 1

2

k∑
l=0

τlφl Bx,l

= 1

2

k∑
p=0

k∑
l=0

(φp(S pl + S pl − B pl)Bx,l) − 1

2

k∑
l=0

τlφl Bx,l

=
k∑

p=0

k∑
l=0

φp S pl Bx,l −
k∑

l=0

τlφl Bx,l

Hence

d

dt

⎛⎝ k∑
p=0

�x

2
ωp U p

⎞⎠ =
k∑

p=0

τp(ψp − vT
p f1

p∗ ) +
k∑

p=0

τpvT
p gp −

k∑
l=0

τlφl Bx,l

= (ψk − vT
k f1

k∗) − (ψ0 − vT
0 f1

0∗) − 1

2
φk[Bx]k − 1

2
φ0[Bx]0 − φk Bx,k + φ0 Bx,0

= (ψk − vT
k f1

k∗) − (ψ0 − vT
0 f1

0∗) − φk(Bx)k + φ0(Bx)0

= Fk −F0

Accuracy: Since the difference matrix D is exact for polynomials of degree up to k, and the entropy conservative flux is 
symmetric and consistent, the truncation error is O(�xk) and the scheme is at least k-th order accurate when polynomials 
of degree k is used. See [15] for more details. As we can see from the numerical examples, the scheme gives the optimal 
(k + 1)-th order accuracy for our smooth solution test case. �
References

[1] D.S. Balsara, Divergence-free adaptive mesh refinement for magnetohydrodynamics, J. Comput. Phys. 174 (2001) 614–648.
[2] D.S. Balsara, Divergence-free reconstruction of magnetic fields and WENO schemes for magnetohydrodynamics, J. Comput. Phys. 228 (2009) 5040–5056.
[3] D.S. Balsara, M. Dumbser, Divergence-free MHD on unstructured meshes using high order finite volume schemes based on multidimensional Riemann 

solvers, J. Comput. Phys. 299 (2015) 687–715.
[4] D.S. Balsara, R. Käppeli, Von Neumann stability analysis of globally divergence-free RKDG schemes for the induction equation using multidimensional 

Riemann solvers, J. Comput. Phys. 336 (2017) 104–127.
[5] D.S. Balsara, T. Rumpf, M. Dumbser, C.D. Munz, Efficient, high accuracy ADER-WENO schemes for hydrodynamics and divergence-free magnetohydro-

dynamics, J. Comput. Phys. 228 (2009) 2480–2516.
[6] D.S. Balsara, D. Spicer, Maintaining pressure positivity in magnetohydrodynamic simulations, J. Comput. Phys. 148 (1999) 111–148.
[7] D.S. Balsara, D. Spicer, A staggered mesh algorithm using high order Godunov fluxes to ensure solenoidal magnetic fields in magnetohydrodynamic 

simulations, J. Comput. Phys. 149 (1999) 270–292.
[8] T. Barth, Numerical methods for gasdynamic systems on unstructured grids, in: Kroner, Ohlberger, Rohde (Eds.), An Introduction to Recent Devel-

opments in Theory and Numerics for Conservation Laws, in: Lecture Notes in Computational Science and Engineering, vol. 5, Springer-Verlag, 1998, 
pp. 198–285.

[9] T. Barth, On the role of involutions in the discontinuous Galerkin discretization of Maxwell and magnetohydrodynamic systems, in: Compatible Spatial 
Discretizations, Springer, New York, 2006, pp. 69–88.

[10] F. Bouchut, C. Klingenberg, K. Waagan, A multiwave approximate Riemann solver for ideal MHD based on relaxation. I: theoretical framework, Numer. 
Math. 108 (2007) 7–42.

[11] F. Brackbill, D. Barnes, The effect of nonzero ∇ · B on the numerical solution of the magnetohydrodynamic equations, J. Comput. Phys. 35 (1988) 
426–430.

[12] M. Brio, C.C. Wu, An upwind differencing scheme for the equations of ideal magnetohydrodynamics, J. Comput. Phys. 75 (1988) 400–422.
[13] M.H. Carpenter, T.C. Fisher, E.J. Nielsen, S.H. Frankel, Entropy stable spectral collocation schemes for the Navier–Stokes equations: discontinuous inter-

faces, SIAM J. Sci. Comput. 36 (2014) B835–B867.
[14] P. Chandrashekar, C. Klingenberg, Entropy stable finite volume scheme for ideal compressible MHD on 2-D Cartesian meshes, SIAM J. Numer. Anal. 54 

(2016) 1313–1340.
[15] T. Chen, C.-W. Shu, Entropy stable high order discontinuous Galerkin methods with suitable quadrature rules for hyperbolic conservation laws, J. 

Comput. Phys. 345 (2017) 427–461.
[16] Y. Cheng, F. Li, J. Qiu, L. Xu, Positivity-preserving DG and central DG methods for ideal MHD equations, J. Comput. Phys. 238 (2013) 255–280.
[17] Y. Cheng, C.-W. Shu, A discontinuous Galerkin finite element method for directly solving the Hamilton–Jacobi equations, J. Comput. Phys. 223 (2007) 

398–415.
[18] B. Cockburn, S. Hou, C.-W. Shu, The Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws IV: the multidi-

mensional case, Math. Comput. 54 (1990) 545–581.
[19] B. Cockburn, S.-Y. Lin, C.-W. Shu, TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one-

dimensional systems, J. Comput. Phys. 84 (1989) 90–113.
[20] B. Cockburn, C.-W. Shu, TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework, 

Math. Comput. 52 (1989) 411–435.

http://refhub.elsevier.com/S0021-9991(17)30810-0/bib62616C73726172414D5232303031s1
http://refhub.elsevier.com/S0021-9991(17)30810-0/bib62616C7361726132303039646976657267656E6366726565s1
http://refhub.elsevier.com/S0021-9991(17)30810-0/bib62616C7361726132303135446976657267656E636566726565s1
http://refhub.elsevier.com/S0021-9991(17)30810-0/bib62616C7361726132303135446976657267656E636566726565s1
http://refhub.elsevier.com/S0021-9991(17)30810-0/bib42616C7361726132303137766F6Es1
http://refhub.elsevier.com/S0021-9991(17)30810-0/bib42616C7361726132303137766F6Es1
http://refhub.elsevier.com/S0021-9991(17)30810-0/bib62616C7361726132303039656666696369656E74s1
http://refhub.elsevier.com/S0021-9991(17)30810-0/bib62616C7361726132303039656666696369656E74s1
http://refhub.elsevier.com/S0021-9991(17)30810-0/bib445342616C73617261313939396D61696E7461696E696E67s1
http://refhub.elsevier.com/S0021-9991(17)30810-0/bib445342616C737261726131393939737461676765726564s1
http://refhub.elsevier.com/S0021-9991(17)30810-0/bib445342616C737261726131393939737461676765726564s1
http://refhub.elsevier.com/S0021-9991(17)30810-0/bib5442617274686E756D65726963616C31393938s1
http://refhub.elsevier.com/S0021-9991(17)30810-0/bib5442617274686E756D65726963616C31393938s1
http://refhub.elsevier.com/S0021-9991(17)30810-0/bib5442617274686E756D65726963616C31393938s1
http://refhub.elsevier.com/S0021-9991(17)30810-0/bib626172746832303036726F6C65s1
http://refhub.elsevier.com/S0021-9991(17)30810-0/bib626172746832303036726F6C65s1
http://refhub.elsevier.com/S0021-9991(17)30810-0/bib424B57s1
http://refhub.elsevier.com/S0021-9991(17)30810-0/bib424B57s1
http://refhub.elsevier.com/S0021-9991(17)30810-0/bib4A42617261636B62696C6C313938306A6370s1
http://refhub.elsevier.com/S0021-9991(17)30810-0/bib4A42617261636B62696C6C313938306A6370s1
http://refhub.elsevier.com/S0021-9991(17)30810-0/bib6272696F31393838757077696E64s1
http://refhub.elsevier.com/S0021-9991(17)30810-0/bib43464E46s1
http://refhub.elsevier.com/S0021-9991(17)30810-0/bib43464E46s1
http://refhub.elsevier.com/S0021-9991(17)30810-0/bib6368616E6472617368656B617232303136656E74726F7079s1
http://refhub.elsevier.com/S0021-9991(17)30810-0/bib6368616E6472617368656B617232303136656E74726F7079s1
http://refhub.elsevier.com/S0021-9991(17)30810-0/bib546368656E32303137656E74726F7079s1
http://refhub.elsevier.com/S0021-9991(17)30810-0/bib546368656E32303137656E74726F7079s1
http://refhub.elsevier.com/S0021-9991(17)30810-0/bib4C694632303133706F7369746976654D4844s1
http://refhub.elsevier.com/S0021-9991(17)30810-0/bib437953s1
http://refhub.elsevier.com/S0021-9991(17)30810-0/bib437953s1
http://refhub.elsevier.com/S0021-9991(17)30810-0/bib636F636275726E72756E67656B7574746131393930s1
http://refhub.elsevier.com/S0021-9991(17)30810-0/bib636F636275726E72756E67656B7574746131393930s1
http://refhub.elsevier.com/S0021-9991(17)30810-0/bib636F636275726E54564231393839s1
http://refhub.elsevier.com/S0021-9991(17)30810-0/bib636F636275726E54564231393839s1
http://refhub.elsevier.com/S0021-9991(17)30810-0/bib636F636B6275726E31393839747662s1
http://refhub.elsevier.com/S0021-9991(17)30810-0/bib636F636B6275726E31393839747662s1


178 Y. Liu et al. / Journal of Computational Physics 354 (2018) 163–178
[21] B. Cockburn, C.-W. Shu, The Runge–Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems, J. Comput. Phys. 141 
(1998) 199–224.

[22] W. Dai, P.R. Woodward, An approximate Riemann solver for ideal magnetohydrodynamics, J. Comput. Phys. 111 (1994) 354–372.
[23] D. Derigs, A.R. Winters, G.J. Gassner, S. Walch, A novel high-order, entropy stable, 3D AMR MHD solver with guaranteed positive pressure, J. Comput. 

Phys. 317 (2016) 233–256.
[24] C.R. Evans, J.F. Hawley, Simulation of magnetohydrodynamic flows – a constrained transport method, Astrophys. J. 332 (1988) 659–677.
[25] M. Fey, M. Torrilhon, A constrained transport upwind scheme for divergence-free advection, in: Hyperbolic Problems: Theory, Numerics, Applications, 

Springer, Berlin, Heidelberg, 2003, pp. 529–538.
[26] T.C. Fisher, M.H. Carpenter, High-order entropy stable finite difference schemes for nonlinear conservation laws: finite domains, J. Comput. Phys. 252 

(2013) 518–557.
[27] T.C. Fisher, M.H. Carpenter, J. Nordström, N.K. Yamaleev, C. Swanson, Discretely conservative finite-difference formulations for nonlinear conservation 

laws in split form: theory and boundary conditions, J. Comput. Phys. 234 (2013) 353–375.
[28] G. Gallice, Positive and entropy stable Godunov-type schemes for gas dynamics and MHD equations in Lagrangian or Eulerian coordinates, Numer. 

Math. 94 (2003) 673–713.
[29] G.J. Gassner, A skew-symmetric discontinuous Galerkin spectral element discretization and its relation to SBP-SAT finite difference methods, SIAM J. 

Sci. Comput. 35 (2013) A1233–A1253.
[30] G.J. Gassner, A.R. Winters, D.A. Kopriva, A well balanced and entropy conservative discontinuous Galerkin spectral element method for the shallow 

water equations, Appl. Math. Comput. 272 (2016) 291–308.
[31] E. Godlewski, P. Raviart, Numerical Approximation of Hyperbolic Systems of Conservation Laws, Springer, 1996.
[32] S.K. Godunov, The symmetric form of magnetohydrodynamics equations, in: Numerical Methods for Mechanics of Continuum Medium, vol. 1, 1972, 

pp. 26–34.
[33] S. Gottlieb, C.-W. Shu, E. Tadmor, Strong stability-preserving high-order time discretization methods, SIAM Rev. 43 (2001) 89–112.
[34] C. Helzel, J.A. Rossmanith, B. Taetz, An unstaggered constrained transport method for the 3D ideal magnetohydrodynamic equations, J. Comput. Phys. 

230 (2011) 3803–3829.
[35] J.S. Hesthaven, T. Warburton, Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications, Springer Science & Business Media, 2007.
[36] S. Hou, X.-D. liu, Solutions of multi-dimensional hyperbolic systems of conservation laws by square entropy condition satisfying discontinuous Galerkin 

method, J. Sci. Comput. 31 (2007) 127–151.
[37] P. Janhunen, A positive conservative method for magnetohydrodynamics based on HLL and Roe methods, J. Comput. Phys. 160 (2000) 649–661.
[38] G.S. Jiang, C.-W. Shu, On a cell entropy inequality for discontinuous Galerkin methods, Math. Comput. 62 (1994) 531–538.
[39] G.S. Jiang, C.C. Wu, A high-order WENO finite difference scheme for the equations of ideal magnetohydrodynamics, J. Comput. Phys. 150 (1999) 

561–594.
[40] D.A. Kopriva, G. Gassner, On the quadrature and weak form choices in collocation type discontinuous Galerkin spectral element methods, J. Sci. Comput. 

44 (2010) 136–155.
[41] P. Lax, B. Wendroff, Systems of conservation laws, Commun. Pure Appl. Math. 13 (1960) 217–237.
[42] P.G. Lefloch, J.-M. Mercier, C. Rohde, Fully discrete, entropy conservative schemes of arbitrary order, SIAM J. Numer. Anal. 40 (2002) 1968–1992.
[43] F. Li, C.-W. Shu, Locally divergence-free discontinuous Galerkin methods for MHD equations, J. Sci. Comput. 22 (2005) 413–442.
[44] F. Li, L. Xu, Arbitrary order exactly divergence-free central discontinuous Galerkin methods for ideal MHD equations, J. Comput. Phys. 231 (2012) 

2655–2675.
[45] E. Lodlewski, P.-A. Raviart, Hyperbolic Systems of Conservation Laws, Ellipses, 1991.
[46] K.G. Powell, An approximate Riemann solver for magnetohydrodynamics, in: Upwind and High-Resolution Schemes, Springer, Berlin, Heidelberg, 1997, 

pp. 570–583.
[47] J.A. Rossmanith, An unstaggered, high-resolution constrained transport method for magnetohydrodynamic flows, SIAM J. Sci. Comput. 28 (2006) 

1766–1797.
[48] D. Ryu, F. Miniati, T.W. Jones, A. Frank, A divergence-free upwind code for multidimensional magnetohydrodynamic flows, Astrophys. J. 509 (1998) 244.
[49] C.-W. Shu, TVB uniformly high-order schemes for conservation laws, Math. Comput. 49 (1987) 105–121.
[50] C.-W. Shu, S. Osher, Efficient implementation of essentially non-oscillatory shock-capturing schemes, J. Comput. Phys. 77 (1988) 439–471.
[51] E. Tadmor, The numerical viscosity of entropy stable schemes for systems of conservation laws, Math. Comput. 49 (1987) 91–103.
[52] G. Tóth, The ∇ · B = 0 constraint in shock-capturing magnetohydrodynamics codes, J. Comput. Phys. 161 (2000) 605–652.
[53] A.R. Winters, G.J. Gassner, Affordable, entropy conserving and entropy stable flux functions for the ideal MHD equations, J. Comput. Phys. 304 (2016) 

72–108.
[54] X. Zhang, C.-W. Shu, On positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshes, J. 

Comput. Phys. 229 (2010) 8918–8934.

http://refhub.elsevier.com/S0021-9991(17)30810-0/bib636F636275726E31393938726B6467s1
http://refhub.elsevier.com/S0021-9991(17)30810-0/bib636F636275726E31393938726B6467s1
http://refhub.elsevier.com/S0021-9991(17)30810-0/bib57444149617070726F78696D61746531393934s1
http://refhub.elsevier.com/S0021-9991(17)30810-0/bib4465726967736E6F76656C32303136s1
http://refhub.elsevier.com/S0021-9991(17)30810-0/bib4465726967736E6F76656C32303136s1
http://refhub.elsevier.com/S0021-9991(17)30810-0/bib43524576616E7373696D756C6174696F6E31393838s1
http://refhub.elsevier.com/S0021-9991(17)30810-0/bib66657932303033636F6E73747261696E6564s1
http://refhub.elsevier.com/S0021-9991(17)30810-0/bib66657932303033636F6E73747261696E6564s1
http://refhub.elsevier.com/S0021-9991(17)30810-0/bib4643s1
http://refhub.elsevier.com/S0021-9991(17)30810-0/bib4643s1
http://refhub.elsevier.com/S0021-9991(17)30810-0/bib46434E5953s1
http://refhub.elsevier.com/S0021-9991(17)30810-0/bib46434E5953s1
http://refhub.elsevier.com/S0021-9991(17)30810-0/bib47616C6C696365506F73697469766532303033s1
http://refhub.elsevier.com/S0021-9991(17)30810-0/bib47616C6C696365506F73697469766532303033s1
http://refhub.elsevier.com/S0021-9991(17)30810-0/bib676173736E657232303133736B6577s1
http://refhub.elsevier.com/S0021-9991(17)30810-0/bib676173736E657232303133736B6577s1
http://refhub.elsevier.com/S0021-9991(17)30810-0/bib47574Bs1
http://refhub.elsevier.com/S0021-9991(17)30810-0/bib47574Bs1
http://refhub.elsevier.com/S0021-9991(17)30810-0/bib45476F646C6577736B6931393936s1
http://refhub.elsevier.com/S0021-9991(17)30810-0/bib676F64756E6F763139373273796D6D6574726963s1
http://refhub.elsevier.com/S0021-9991(17)30810-0/bib676F64756E6F763139373273796D6D6574726963s1
http://refhub.elsevier.com/S0021-9991(17)30810-0/bib676F74746C696562323030317374726F6E67s1
http://refhub.elsevier.com/S0021-9991(17)30810-0/bib68656C7A656C32303131756E737461676765726564s1
http://refhub.elsevier.com/S0021-9991(17)30810-0/bib68656C7A656C32303131756E737461676765726564s1
http://refhub.elsevier.com/S0021-9991(17)30810-0/bib4A5348657374686176656E6E6F64616C444732303037s1
http://refhub.elsevier.com/S0021-9991(17)30810-0/bib53486F7573797374656D656E74726F707932303037s1
http://refhub.elsevier.com/S0021-9991(17)30810-0/bib53486F7573797374656D656E74726F707932303037s1
http://refhub.elsevier.com/S0021-9991(17)30810-0/bib4A616E68756E656E32303030s1
http://refhub.elsevier.com/S0021-9991(17)30810-0/bib476A69616E6731393934656E74726F7079s1
http://refhub.elsevier.com/S0021-9991(17)30810-0/bib6A69616E673139393968696768s1
http://refhub.elsevier.com/S0021-9991(17)30810-0/bib6A69616E673139393968696768s1
http://refhub.elsevier.com/S0021-9991(17)30810-0/bib44414B6F70726976617175616472617475726532303130s1
http://refhub.elsevier.com/S0021-9991(17)30810-0/bib44414B6F70726976617175616472617475726532303130s1
http://refhub.elsevier.com/S0021-9991(17)30810-0/bib6C61783139363073797374656D73s1
http://refhub.elsevier.com/S0021-9991(17)30810-0/bib4C4D52s1
http://refhub.elsevier.com/S0021-9991(17)30810-0/bib464C696C6F63616C6C79646976657267656E636532303035s1
http://refhub.elsevier.com/S0021-9991(17)30810-0/bib464C696172626974726172796F7264657232303132s1
http://refhub.elsevier.com/S0021-9991(17)30810-0/bib464C696172626974726172796F7264657232303132s1
http://refhub.elsevier.com/S0021-9991(17)30810-0/bib45504152s1
http://refhub.elsevier.com/S0021-9991(17)30810-0/bib706F77656C6C31393934617070726F78696D617465s1
http://refhub.elsevier.com/S0021-9991(17)30810-0/bib706F77656C6C31393934617070726F78696D617465s1
http://refhub.elsevier.com/S0021-9991(17)30810-0/bib726F73736D616E69746832303036756E737461676765726564s1
http://refhub.elsevier.com/S0021-9991(17)30810-0/bib726F73736D616E69746832303036756E737461676765726564s1
http://refhub.elsevier.com/S0021-9991(17)30810-0/bib44525955646976657267656E63656672656531393938s1
http://refhub.elsevier.com/S0021-9991(17)30810-0/bib53747662s1
http://refhub.elsevier.com/S0021-9991(17)30810-0/bib534F31s1
http://refhub.elsevier.com/S0021-9991(17)30810-0/bib5431s1
http://refhub.elsevier.com/S0021-9991(17)30810-0/bib47546F746832303030646976657267656E636566726565s1
http://refhub.elsevier.com/S0021-9991(17)30810-0/bib415257696E746572736166666F726461626C6532303136s1
http://refhub.elsevier.com/S0021-9991(17)30810-0/bib415257696E746572736166666F726461626C6532303136s1
http://refhub.elsevier.com/S0021-9991(17)30810-0/bib5A53s1
http://refhub.elsevier.com/S0021-9991(17)30810-0/bib5A53s1

	Entropy stable high order discontinuous Galerkin methods for ideal compressible MHD on structured meshes
	1 Introduction
	2 Ideal MHD equations
	2.1 The entropy function for the ideal MHD

	3 Entropy stable high order DG schemes
	3.1 Gauss-Lobatto quadrature and summation-by-parts

	4 Numerical examples
	4.1 One dimensional Riemann problems
	4.2 The torsional Alfvén wave pulse
	4.3 The Orszag-Tang vortex problem
	4.4 The rotor test
	4.5 Smooth Alfvén waves
	4.6 Rotated shock tube problem

	5 Concluding remarks
	Appendix A Proof of Theorem 3.2
	References


